Reactions of α-Aminoazoles with (2E)-3-Phenylacryloyl Chloride

V. V. Lipson ${ }^{a}$, T. M. Karnozhitskaya ${ }^{a}$, S. V. Shishkina ${ }^{b}$, O. V. Shishkin ${ }^{b}$, and A. V. Turov ${ }^{c}$
${ }^{a}$ Danilevskii Institute of Endocrine Pathology Problems, Ukrainian Academy of Medical Sciences, Kharkov, 61002 Ukraine
e-mail: lipson@ukr.net
${ }^{\text {b }}$ Research \& Development Complex "Institute of Single Crystals", Ukrainian National Academy of Sciences, Kharkov, Ukraine
${ }^{\text {cKiev National University, Kiev, Ukraine }}$

Received February 26, 2008

Abstract

Reaction of 5-amino-3-methylpyrazole, 3-amino-, 5-amino-3-methylsulfanyl-1,2,4-triazole and 5-amino-1,2,4-triazole-3-thione with 3-phenylacryloyl-chloride under mild conditions is characterized by low selectivity and does not lead to the formation of fused heterocyclic systems but gives mixtures of products of mono- and diacylation of the nucleophilic sites in the molecules of α-aminoazoles. Endocyclic monoacyl derivatives of aminotriazoles in DMF undergo a transacylation at the exo-amino- group followed by cyclization into dihydro-1,2,4-triazolo[1,5-a]-pyrimidin-5-ones.

DOI: 10.1134/S1070428008110225

Reactions of α-aminoazoles with unsaturated acylating 1,3-bielectrophiles resulted in fused azoloazine systems distinguished by the location of the junction and/or by the position of substituents in the azine ring due to the nonequivalence of the reactive sites in both components of the cyclocondensation. The prevalence of one among the possible paths of the reaction originates from both the nature of the reactants and the reaction conditions. The numerous publications deal with this kind transformations involving substituted acrylic and propiolic acids [13], cinnamic acid and derivatives [4-9], aroyl- and arylmethylenepyruvates [9-13], ethoxymethylene- and arylmethyleneethylacetoacetates [3, 14-20], ethoxyalkyl-idene- and arylmethylenemalonates [3, 13, 21-25], derivatives of Meldrum's acid [26-35], but in contrast scanty data concern the reactions of heterylamines with ($2 E$)3 -phenylacryloyl chloride (cinnamoyl chloride) [5, 7].

The aim of this work was to elucidate the direction of the reactions of 5-amino-3-methylpyrazole (I), 2-aminobenzimidazole (II), 3-amino-, 5-amino-3-methylsulfanyl-1,2,4-triazole (III, IV), and 5-amino-1,2,4-triazole-3thione (\mathbf{V}) with cinnamoyl chloride (VI) under various conditions.

The processes involving aminopyrazole I and acid chloride VI provide multicomponent mixtures without cyclization products and containing prevailingly acylation
products at all nitrogen atoms but not at the endocylic carbon in the molecule of amine I (Scheme 1). For instance, in the reaction with a 1.5 -fold excess of acid chloride VI in acetone at $40^{\circ} \mathrm{C}$ three compounds VIIIX were obtained. Into the formation of one among them, azomethine IX, also the solvent was involved. The main component of this mixture was pyrazolylcinnamamide VII. We failed to convert the latter into pyrazolo[3,4-b]pyridinone or pyrazolo[1,5-a]pyrimidinone even at prolonged boiling (2 h) in DMF. At a catalysis with pyridine in acetone a mixture of two compounds IX and \mathbf{X} was obtained in a ratio 1:1. A mixture of three compounds, VII, VIII, and \mathbf{X}, two among them containing two acyl residues each, was obtained at boiling in benzene. Without heating with pyridine catalysis in benzene dicinnamoyl derivative \mathbf{X} and cinnamic anhydride $\mathbf{X I}$ were obtained. In no synthesis the fused pyrazolopyridines or pyrazolopyrimidines were detected (Scheme 1).

The identification of structures VII-X was performed based on the analysis of mass, IR, ${ }^{1} \mathrm{H}$ spectra and XRD of compound X. Anhydride XI was identified by comparison of its physicochemical and spectral characteristics with the published data [36].

The comparison of data on the nitrogen content with the mass spectra made it possible to distinguish monoamide VII from dicinnamoyl derivatives VIII and \mathbf{X} and azo-

Scheme 1.

methine IX. At the electron impact ionization of compounds VIII and IX their mass spectra lack peaks of the molecular ions. Therefore for these compounds ${ }^{252} \mathrm{Cf}$ plasma-desorption spectra were registered that permitted the establishment of the molecular mass.

In the IR spectra of compounds VII, VIII, and \mathbf{X} the most characteristic are the vibrations of NH 3324-2928, "amide I" 1692-1660, "amide II" 1592-1528 cm¹. However these data are insufficient for establishing the position of substituents in the ring.
${ }^{1} \mathrm{H}$ NMR spectrum of amide VII differs from the spectra of all other products of amine \mathbf{I} acylation for it
Table 1. Bond lengths (d, \AA) in the molecule of $(2 E)-N-\{5-$ methyl-1-[(2E)-3-phenyl-prop-2-enoyl]-1 H -pyrazol-3-yl\}-3phenylacrylamide

Bond	d	Bond	d	Bond	d
$\mathrm{O}^{I}-\mathrm{C}^{4}$	$1.16(1)$	$\mathrm{C}^{14}-\mathrm{C}^{15}$	$1.47(1)$	$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.49(1)$
$\mathrm{N}^{I}-\mathrm{C}^{l}$	$1.33(1)$	$\mathrm{C}^{16}-\mathrm{C}^{17}$	$1.46(1)$	$\mathrm{C}^{6}-\mathrm{C}^{7}$	$1.47(1)$
$\mathrm{N}^{I}-\mathrm{N}^{2}$	$1.428(9)$	$\mathrm{C}^{17}-\mathrm{C}^{18}$	$1.39(1)$	$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.38(1)$
$\mathrm{N}^{3}-\mathrm{C}^{4}$	$1.39(1)$	$\mathrm{C}^{19}-\mathrm{C}^{20}$	$1.35(1)$	$\mathrm{C}^{9}-\mathrm{C}^{10}$	$1.34(1)$
$\mathrm{C}^{I}-\mathrm{C}^{3}$	$1.37(1)$	$\mathrm{C}^{2 l}-\mathrm{C}^{22}$	$1.34(1)$	$\mathrm{C}^{11}-\mathrm{C}^{12}$	$1.36(1)$
$\mathrm{C}^{2}-\mathrm{C}^{3}$	$1.39(1)$	$\mathrm{O}^{2}-\mathrm{C}^{14}$	$1.23(1)$	$\mathrm{C}^{15}-\mathrm{C}^{16}$	$1.37(1)$
$\mathrm{C}^{5}-\mathrm{C}^{6}$	$1.32(1)$	$\mathrm{N}^{1}-\mathrm{C}^{14}$	$1.40(1)$	$\mathrm{C}^{17}-\mathrm{C}^{22}$	$1.37(1)$
$\mathrm{C}^{7}-\mathrm{C}^{12}$	$1.33(1)$	$\mathrm{N}^{2}-\mathrm{C}^{2}$	$1.31(1)$	$\mathrm{C}^{18}-\mathrm{C}^{19}$	$1.37(1)$
$\mathrm{C}^{8}-\mathrm{C}^{9}$	$1.41(1)$	$\mathrm{N}^{3}-\mathrm{C}^{2}$	$1.41(1)$	$\mathrm{C}^{20}-\mathrm{C}^{21}$	$1.36(1)$
$\mathrm{C}^{10}-\mathrm{C}^{11}$	$1.39(1)$	$\mathrm{C}^{l}-\mathrm{C}^{13}$	$1.54(1)$		

contains two broadened singlets from the NH group, δ 12.03, 10.51 ppm , and a single $A B$ system of signals in the range $\delta 7.51-6.86 \mathrm{ppm}, J 15.6 \mathrm{~Hz}$, characteristic of the trans-located protons of the cinnamoyl fragment. In the spectrum of compound VIII two similar $A B$ systems were observed (see EXPERIMENTAL) and one proton of the imino group, $\delta 10.78 \mathrm{ppm}$, In the spectrum of azomethine IX the resonance of the NH group is absent, one system of proton signals belonging to a cinnamoyl fragment and three singlets of methyl groups were registered. The nuclear Overhauser effect involving the CH_{3} group of the pyrazole ring in compounds VIII and IX was only observed with respect to the H^{4} proton of this ring suggesting the lack of substituents at N^{2} atom in both structures. The spectrum of diacyl derivative \mathbf{X} differed from the spectrum of isomer VIII mainly by the value δ_{NH}. The more downfield position of this signal in the spectrum of compound VIII should be caused by the deshielding effect of the cinnamoyl fragment contiguous to the NH group. In the NOE experiment with compound \mathbf{X} on the irradiation of the CH_{3} group of the pyrazole ring responded the proton $\mathrm{H}^{4}(\delta 6.8 \mathrm{ppm})$ and protons of one of the cinnamoyl substituents. The final choice between structures VIII and \mathbf{X} was done based on XRD analysis on a single crystal of compound \mathbf{X} (Fig. 1, Table 1, 2) that proved the structure of this compound as $(2 E)-N-$ \{5-methyl-1-[(2E)-3-phenyl-prop-2-enoyl]-1H-pyrazol-3-yl\}-3-phenylacryl-amide.

The pyrazole ring and all nonhydrogen atoms of th substituent at the atom N^{l} are located in the same plan within $0.03 \AA$. Therewith the enone fragment is in the: cis-conformation, torsion angle $\mathrm{O}^{2} \mathrm{C}^{14} \mathrm{C}^{15} \mathrm{C}^{16}$ is $-2(2) \mathrm{des}$ The planar conformation of this fragment of the molecul is apparently additionally stabilized by the attractive intes action $\mathrm{H}^{15 \ldots} \mathrm{~N}^{2} 2.39 \AA$ (the sum of van der Waals radii i 2.67 E [37]) and leads to a considerable steric strain ε show the shortened intramolecular contacts $\mathrm{H}^{15} \ldots \mathrm{C}^{22} 2.7$ $(2.87 \AA), \mathrm{H}^{15 \cdots} \mathrm{H}^{22} 2.27(2.34 \AA), \mathrm{H}^{16 \cdots} \mathrm{H}^{18} 2.26(2.34 \AA$ $\mathrm{H}^{22 \ldots} \mathrm{C}^{15} 2.81(2.87 \AA), \mathrm{O}^{2 \ldots} \mathrm{C}^{13} 2.87$ ($3.00 \AA$). It j presumable that the steric strain is partially compensate by lengthening of bonds $\mathrm{N}^{1}-\mathrm{N}^{2} 1.428(9), \mathrm{N}^{1}-\mathrm{C}^{14} 1.40(1)$, $\mathrm{C}^{15} \mathrm{C}^{16} 1.37$ (1) \AA compared to their mean values 1.366 , $1.347,1.316 \AA$ respectively [38]. The carbamide group and the atoms $\mathrm{C}^{5}, \mathrm{C}^{6}$ are located in one plane with an accuracy of 0.01 Anotwithstanding the repulsion between hydrogen atoms [shortened intramolecular contact $\left.\mathrm{H}^{3 N \cdots \mathrm{H}^{5}} 2.07(2.34 \AA)\right]$. Therewith the carbamide group and the pyrazole ring are slightly noncoplanar [torsion angle $\mathrm{C}^{4} \mathrm{~N}^{3} \mathrm{C}^{2} \mathrm{C}^{3}$ 19(2) deg] evidently because of the repulsion between the atoms of the pyrazole ring and the carbonyl group [shortened intramolecular contact $\left.\mathrm{O}^{1 \ldots \mathrm{C}^{13}} 2.90(3.00 \AA)\right]$. The enone fragment is in the s-cis-conformation [torsion angle $\mathrm{O}^{l} \mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}-1(2) \mathrm{deg}$]. The phenyl substituent at the atom C^{6} is also somewhat turned with respect to the double bond $\mathrm{C}^{5}-\mathrm{C}^{6}$ [torsion angle $\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7} \mathrm{C}^{8}-9(2) \mathrm{deg}$] because of shortened intramolecular contact $\mathrm{H}^{8 \ldots} \mathrm{C}^{5} 2.81$ ($2.87 \AA$).

The lost selectivity in reactions of amine I with the cinnamoyl chloride and the lack of products formed at the reaction site C^{4} in the pyrazole ring may be understood taking into consideration the principle of hard and soft acids and bases. Acid chloride VI behaved as a hard acid attacking only hard basic sites, exo- and endo-cyclic nitrogen atoms in the heterylamine.

The acylation of 2-aminobenzimidazole (II) with cinnamoyl chloride at $18-20^{\circ} \mathrm{C}$ in DMF, acetone, and also at short ($5-10 \mathrm{~min}$) boiling in benzene provided amide XII that at long (2 h) boiling in DMF converted into pyrimido[1,2-a]benzimidazol-2-one (XIII) in a high yield (Scheme 2). No acylation products XIV and XV at the endocyclic nitrogen atoms or at two reaction sites in the molecule of amine II were detected in any of the above described syntheses in contrast to the processes involving acid chloride VI and aminopyrazole I.

Physicochemical and spectral characteristics of benzimidazolylcinnamamide XII and pyrimidobenzimid-azolone XIII are consistent with the previously published in [4,

Fig. 1. Structure of the molecule of $(2 E)-N-\{5-$ methyl-1-[(2E)-3-phenylprop-2-enoyl]-1 H-pyrazol-3-yl\}-3-phenylacrylamide (X)
5] for compounds obtained respectively by melting 2carbomethoxyaminobenzimidazole with cinnamic acid without solvent or from amine II with cinnamoyl chloride in THF. However amide XII failed to be converted pyrimido-[1,2-a]benzimidazol-2-one (XIII) in $[5,7]$ by heating in diglyme and DMF.

3-Aminotriazole III at equimolar ratio with acid chlorideOm VI in acetone at heating gave a mixture of three substances: acyl derivative XVI, amide XVII, and salt XVIII (Scheme 3). The prevailing component is the product of acylation at the atom N^{l} in the azole ring XVI. At the catalysis with pyridine both in acetone and in benzene the electrophilic attack is aimed at endocyclic atoms N^{1} and N^{2}. Depending on the conditions only the yield of compounds XVI and XIX varied, but the main
Table 2. Bond angles $(\varphi, \operatorname{deg})$ in the structure of $(2 E)-N-\{5-$ methyl-1-[(2E)-3-phenyl-prop-2-enoyl]-1 H -pyrazol-3-yl\}-3-phenylacryl-amide (\mathbf{X})

gle	φ	Angle		Ang	
$\mathrm{C}^{l} \mathrm{~N}^{l} \mathrm{C}^{14}$	12	$\mathrm{O}^{1} \mathrm{C}^{4} \mathrm{C}^{5}$	132(1)	$\mathrm{O}^{2} \mathrm{C}^{14} \mathrm{C}^{1 / 5}$	122(1)
${ }^{1} \mathrm{~N}^{2}$	112.7(7)	$\mathrm{N}^{3} \mathrm{C}^{4} \mathrm{C}^{5}$	10		118.7(9)
	117.4(8)	$\mathrm{C}^{6} \mathrm{C}^{5} \mathrm{C}^{4}$	11	14	12
	101.6(7)	$\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{7}$	13	$\mathrm{C}^{15} \mathrm{C}^{16} \mathrm{C}^{17}$	
$\mathrm{C}^{4} \mathrm{~N}^{3} \mathrm{C}^{2}$	124	C	11	$\mathrm{C}^{22} \mathrm{C}^{17} \mathrm{C}^{18}$	12
$\mathrm{N}^{l} \mathrm{C}^{l} \mathrm{C}^{3}$	105.9(9)	$\mathrm{C}^{12} \mathrm{C}^{7} \mathrm{C}^{6}$	12	$\mathrm{C}^{22} \mathrm{C}^{17} \mathrm{C}$	
C^{13}	125.7(8)	${ }^{7} \mathrm{C}^{6}$	122	$\mathrm{C}^{18} \mathrm{C}^{17}$	(1)
${ }^{13}$	128.3(9)	CC	120(1)	$\mathrm{C}^{\text {c }}$	119
$\mathrm{N}^{2} \mathrm{C}^{2} \mathrm{C}^{3}$	114(1)	$\mathrm{C}^{10} \mathrm{C}^{9} \mathrm{C}^{8}$	119(1)	$\mathrm{C}^{29} \mathrm{C}^{19}$	120
$\mathrm{N}^{2} \mathrm{C}^{2} \mathrm{~N}^{3}$	117.4(8)	$\mathrm{C}^{9} \mathrm{C}^{10} \mathrm{C}^{11}$	122(1)	$\mathrm{C}^{\prime} \mathrm{C}$	120(1)
$\mathrm{C}^{3} \mathrm{C}^{2} \mathrm{~N}^{3}$	129	$\mathrm{C}^{12} \mathrm{C}^{1 /} \mathrm{C}^{10}$	116	$\mathrm{C}^{22} \mathrm{C}^{21} \mathrm{C}^{20}$	123(1)

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 112008
product always was compound XVI. In benzene in the absence of pyridine it was the only acylation product, but in a low yield. In all events at the end of the reaction the mixture contained also the initial aminotriazole III.

Cinnamoyl derivative XVI at boiling in DMF for 1.5 h suffered a transacylation converting into amide XVII that in its turn underwent a cyclization into tetra-hydrotriazolo[1,5-a]-pyrimidin-5-one (XX). A complete conversion of compound XVI into pyrimidinone XX
occurred in 5-6 h. The latter by physicochemical and spectral characteristics coincided with the substance obtained by the reaction of amino-triazole with methyl cinnamate whose structure was confirmed by XRD and described in [8].

7-Oxo derivatives and also triazolo[4,3-a]-pyrimidinones were not found among the products of transformations of substances XVI and XVII. The structure of compounds XVI-XIX was established by spectral

Scheme 2.

Scheme 3.

methods. The most characteristic feature of the IR spectra of acyl derivatives XVI, XVII, XIX, and salt XVIII is the absorption band of the carbonyl group at $1684-1704 \mathrm{~cm}^{-1}$. The distinguishing of structures XVI and XIX was carried out by ${ }^{1} \mathrm{H}$ NMR spectroscopy from the chemical shifts of methine protons of the triazole ring and of amino groups. In keeping with [39] the signal of H^{5} proton in the spectrum of N^{1}-acyl-3-amino-1,2,4-triazoles appeared downfield with respect to that in the N^{2}-substituted compounds. For the signals of NH_{2} protons the opposite trend is valid. Actually, in the spectrum of compound XVI the proton signal of H^{5} was observed in the region of aromatic protons, $\delta\left(\mathrm{NH}_{2}\right) 7.8$, and for substance XIX $\delta(\mathrm{CH}) 9.0, \delta\left(\mathrm{NH}_{2}\right) 6.1 \mathrm{ppm}$. Besides in the spectrum of compound XIX the signal of NH group was absent. The scope of these data suggests the assign-ment to compounds XVI and XIX of structures 1-[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-5amine and 1-[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-3-amine respectively.

For the spectrum of amide XVII the lack of the resonance of the protons of NH_{2} group and the presence of signals from two imino groups as broadened singlets was characteristic. However in event of existence of a tautomeric form XVIa it would be difficult to distinguish it from structure XVII. Besides in the reactions under consideration the formation of N^{4}-acyl derivatives also is not excluded. To solve this problem a 2D HMBC spectrum of compound XVI was registered. The correlations between the atoms ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ revealed in this spectrum and serving as a reason for assignment the quaternary carbon atoms are presented in Fig. 2. The signals of the protonated carbon atoms were assigned using HMQC spectra.

For H^{3} proton only the interaction with C^{5} was observed, no correlation occurred with the carbonyl carbon atom. Consequently, the substituent was located not at N^{2} or N^{4}, but at the atom N^{1}. The findings obtained unambiguously proved the structure of compound XVI as N^{1}-acyl derivative and permitted choosing among its tautomer forms XVI and XVIa the first one.

The revealed acylation direction of amine III at the reaction sites $\mathrm{N}^{1}, \mathrm{~N}^{2}$, and NH_{2}, but not N^{4}, and also the ability of 3-acylamino derivative XVI of transacylation is consistent in general with the data previously obtained [40-42] in reactions with acid chlorides of the structure $\mathrm{RCOCl}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}, \mathrm{Ph}, \mathrm{OMe}, \mathrm{OEt})$ which are not 1,3-bielectrophiles.

Fig. 2. Assignment of signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 1-[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-5-amine (XVI) with indication of the main correlations ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ in the two-dimensional HMBC spectrum.

At a short (30 min) heating of 5-amino-3-methylsulfanyltriazole (IV) with acid chloride VI in acetone or benzene without catalyst or in the presence of pyridine a mixture formed of the initial amine with products of acylation at the endocylic atoms N^{1} and N^{2} (Scheme 4). The prevailing product was always compound XXI. Cinnamoyl derivative XXII in good yield was converted into isomer XXI at boiling in a mixture ethyl acetatepyridine for 2.5 h . Both compounds XXI and XXII at prolonged (4 h) boiling in DMF formed triazolo[1,5-a]-pyrimidin-5-one (XXIII). The structure of compounds XXI and XXII was proved by spectral methods, the composition was confirmed by elemental analysis. The physicochemical and spectral characteristics of triazolopyrimidinone XXIII coincide with those described for the condensation product of amine IV with methyl cinnamate in [32].

IR spectra of compounds synthesized contain a set of bands characteristic of compounds having in their structure associated groups $\mathrm{NH}_{2}, \mathrm{C}=\mathrm{O}$, and CN [43]. The data on nitrogen content in amides XXI and XXII show that they have in the structure only one acyl residue. This is confirmed also by the ${ }^{1} \mathrm{H}$ NMR spectra. The distinguishing of isomers XXI and XXII was made based on the comparison of the chemical shifts of the protons of amino -groups. In the spectrum of compound XXI the signal of the NH_{2} group is shifted downfield by 1.5 ppm compared to the analogous signal in the spectrum of compound XXII.

Aminotriazolethione \mathbf{V} with an equimolar amount of acid chloride VI in acetone-pyridine medium within 30 min formed a mixture of mono- XXIV and di-cinnamoyl XXV derivatives in a ratio $3: 1$ (according to ${ }^{1} \mathrm{H}$ NMR) that we failed to separate (Scheme 5). On prolonging the heating in 3 h two more compounds XXVI and XXVII

Scheme 4.

Scheme 5.

formed that were isolated as individual substances. The only bicyclic product among these compounds was triazolothiazinone XXVII. The structural analog of this compound without the amino group was prepared [44] by the acylation of 1,2,4-triazole-3-thione with acid chloride VI.

The product of aminoazole \mathbf{V} acylation at the amino group XXVIII was obtained by boiling the initial reagents in pyridine for 1 h , and also by the thermolysis of compound XXVI by its boiling in DMF (1 h) and at the pyrolysis of thiazinone XXVII accompanying its melting.

The structure of compounds XXIV-XXVIII was established by spectral methods, the composition was
confirmed by elemental analysis. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of compounds XXIV and XXV appeared all the groups of signals confirming their structures as mono- and dicinnamoyl derivatives of aminotriazolethione: the broadened singlet of NH proton of thione XXIV, the signals of three phenyl rings and of three fragments $\mathrm{CH}=\mathrm{CH}$ giving rise to systems $A B$ with $J_{\text {trans }} \sim 16 \mathrm{~Hz}$. Therewith the resonance of CH protons of the substituent attached to the atom N^{1}, both in compound XXIV and in diacyl derivative XXV, are registered at a large interval of δ values thus permitting the estimation of the mixture composition. The location of the signals of two amino groups, $\delta 7.79$ and 7.86 ppm partially over-
lapped by the signals of aromatic protons was established in the experiment with $\mathrm{CD}_{3} \mathrm{OD}$. Apparently, the downfield signal belongs to the NH_{2} group of compound $\mathbf{X X V}$.

The comparison of the data on the nitrogen content with the mass spectrum of acid XXVI made it possible to regard the peak of $m / z 394$ as the molecular ion. Consequently, two molecules of acid chloride VI were involved in the acid formation. IR spectrum of compound XXVI contains the absorption bands characteristic of associated groups $\mathrm{COOH}, \mathrm{NH}_{2}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of this compound alongside the multiplets of the protons of the phenyl rings were registered the $A B$ system of the cinnamoyl fragment, $J_{\text {trans }} 16 \mathrm{~Hz}$, the $A B X$ system of the phenylpropionyl residue, and a broadened singlet of the OH proton of the carboxy group, $\delta 12.34$ ppm . The signal of the amino group is overlapped by the signals of aryl protons, and its presence at 7.68 ppm is confirmed by the experiment on deuterium exchange with CD_{3} OD. Besides in the spectrum of acid XXVI only two types of signals from protons capable of exchange are present, groups COOH and NH_{2}. This result permitted to reject the presence of a structure formed by acylation of the reaction site N^{l} amd alkylation of the sulfur atom in amine \mathbf{V}. Otherwise inevitably a proton signal from the NH of the triazole ring should be present. Yet at the alternative position of the phenylpropionyl fragment at the atom N^{l} and the cinnamoyl moiety at N^{2} the spectrum would contain the same groups of signals as in that of compound XXVI. In order to get more precise information on the structure of substance XXVI the chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ were established from the correlation spectra HMQC and HMBC (Fig. 3). However for the alternative structure XXVIa the chemical shifts should have the same values (Fig. 4). The difference was found only for the carbon atoms of the triazole but the δ values were too close to permit the final choice between the structure. Yet a certain possibility for the establishment of the structure lies in the presence of the HMBCcorrelation between the methine proton of the propionyl fragmenta, $\delta 5.10 \mathrm{ppm}$, and a carbon atom of the triazole ring, $\delta 160.4 \mathrm{ppm}$. From the relaxation characteristics of carbon atoms in this ring it is possible to establish which among them is linked to the NH_{2} group or to the sulfur atom. The bond to amino group should result in more efficient relaxation and, respectively, to growing of the signal intensity when the the spectrum is registered with a small relaxation interval. In an experiment of a pulse decoupling without decoupling from protons the signal at

Fig. 3. Assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals taking into account HMQC and HMBC correlations for 3-\{3-amino$2[(2 E)$-3-phenyl-prop-2-enoyl]-5-thioxo-2,5-dihydro- $1 H$ -1,2,4-triazol-1-yl \}-3-phenyl-propanoic acid (XXVI).

Fig. 4. Assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals taking into account HMQC and HMBC correlations for 3-\{5-amino-2-[(2E)-3-phenyl-prop-2-enoyl]-3-thioxo-2,3-dihydro-1 H -1,2,4-triazol-1-yl\}-3-phenyl-propanoic acid (XXVIa).
$\delta 160.4 \mathrm{ppm}$ appeared as a doublet with $J 5 \mathrm{~Hz}$, and the signal at $\delta 158.2 \mathrm{ppm}$ was a singlet, and their intensities related as $0.58: 1$. Thus the carbon atom signal split by the coupling with the CH proton of the propionyl fragment has lower intensity than the unsplit signal. This fact confirms the structure XXVI.

The mass spectrum of compound XXVII contains a molecular ion peak, $m / z 246$, showing that only one molecule of acid chloride was involved into its formation. The most characteristic absorption bands in the IR spectra originate from vibrations of CO and NH_{2} groups at 1724 and $3340-3172 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum the following groups of signals were observed: a multiplet of phenyl protons, an $A B X$ system of azine ring, and a broadened singlet of amino group. The spectrum completely confirmed the structure of compound XXVII as a triazolothiazinone.

The comparison of results of the study of reactions between 3-amino-5-methylpyrazole (I) and cinnamoyl chloride (VI) with the data on the reactions of amino-1,2,4-triazoles III-V with the same acylating 1,3-bielectrophile demonstrated that the significant differentiation of the electronic characteristics of the reaction sites in acid chloride VI and on the contrary not so pronounced in the molecules of aminoazoles led to a complete loss of selectivity in reactions between these reagents. Under mild conditions the process is kinetically controlled and ends on the stage of acylation of nucleophilic centers of all the amines under consideration. The cyclization requires more severe conditions (boiling in DMF) that leads in the most cases to a considerable tarring. In cinnamoyl derivatives XVI, XXI, and XXII a migration of the acyl residue was observed leading to the formation of probably more thermodynamically stable products that were able under these conditions to alkylate the endocyclic reaction site of the aminoazole necessary for the building up of the partially hydrogenated pyrimidine ring.

EXPERIMENTAL

IR spectra were recorded on a spectrophotometer Specord M-82 from samples pelletized with KBr. ${ }^{1} \mathrm{H}$ NMR spectra were registered on a spectrometer Varian-200 from solutions in DMSO- d_{6}, internal reference TMS. Experiments on heteronuclear correlations HMBC and HMQC for compounds XVI and XXVI dissolved in DMSO- d_{6} were performed on a spectrometer Varian Mercury 400. Mass spectra of compounds VIII, IX, and XII were obtained on an instrument MSBC Selmi (Sumy, the Ukraine) (source $10 \mu \mathrm{Ci}{ }^{252} \mathrm{Cf}$) for positive and negative ions at the accelerating voltage $\pm 20 \mathrm{kV}$. Mass spectra of compounds VII, X, XXVI, and XXVII were measured on a GC-MS instrument Varian 1200 L with a direct admission of the sample into the ion source, ionization by electron impact, energy 70 eV . Melting points were determined on a Koeffler heating block.

X-ray diffraction analysis of $2(E)-\mathrm{N}$ - $\{5-$ methyl-1-[(2E)-3-phenylprop-2-enoyl]-1 H-pyrazol-3-yl\}-3phenylacrylamide (X). Crystals monoclinic, $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, at $20^{\circ} \mathrm{C} a 20.389(6), b 5.335(2), c 17.060(5) \AA, \beta 90.14(2)$ deg, V 1856(1) $\AA^{3}, M_{r} 357.40, Z 4$, space group $\mathrm{P}_{1} / \mathrm{C}$, $d_{\text {calc }} 1.279 \mathrm{~g} / \mathrm{cm}^{3}, \mu\left(\mathrm{Mo}_{\alpha}\right) 0.084 \mathrm{~mm}^{-1}, F(000) 752$. parameters of the unit cell and intensity of 8862 reflections (2440 independent, $R_{\text {int }} 0.139$) were measured on a diffractometer Xcalibur-3 ($\mathrm{Mo} K_{\alpha}$ radiation, CCD-
detector, graphite monochromator, ω-scanning, $2 \theta_{\max } 50^{\circ}$. The structure was solved by the direct method by the software package SHELXTL [38]. The positions of hydrogen atoms were calculated geometrically and refined in the rider model with $U_{\text {iso }}=n U_{\text {eq }}(n=1.5$ for the methyl group, $n=1.2$ for the other hydrogen atoms). The structure was refined for F^{2} by the full-matrix least-mean-squares method in the anisotropic approximation for nonhydrogen atoms till $w R_{2} 0.127$ for 2340 reflections [$R_{1} 0.081$ for 1106 reflexions with $F>4 \sigma(\mathrm{~F}), S 0.99$].

Reaction of 5-amino-3-methylpyrazole (I) with cinnamoyl -chloride (VI). a. To a solution of 5 mmol of amine \mathbf{I} in 2 ml of acetone at $40^{\circ} \mathrm{C}$ was added a solution of 7.5 mmol of acid chloride VI in 2 ml of acetone, after 30 min the precipitate was filtered off and recrystallized from a mixture acetone-methanol, 1:1. We isolated 0.6 mmol (12%) of 3-methyl- N -(1-methylethylidene)-1-[(2E)-3-phenylprop-2-enoyl]-1H-pyrazol-5-amine (IX). $\mathrm{mp} 290-292^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 2960\left(\mathrm{CH}_{3}\right)$, 1684 (CO), 1624 ($\mathrm{Ph}-\mathrm{C}=\mathrm{C}$), 1516 ($\mathrm{C}=\mathrm{N}$). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $7.77-7.42 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.71 \mathrm{~d}(1 \mathrm{H}$, $\left.=\mathrm{CH}, J_{A B} 16.4 \mathrm{~Hz}\right), 7.64 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.2 \mathrm{~Hz}\right)$, $7.24 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right), 2.26,1.46,1.32 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum: $[M+\mathrm{H}]^{+} 268,[M-\mathrm{H}]^{+}$266. Found, \%: C 71.87; H 6.33; N 15.53. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$. Calculated, \%: C 71.91; H 6.37; N 15.57. M 267.33.

From the amorphous residue obtained by solvent removal from the acetone filtrate we isolated using methanol $0.5 \mathrm{mmol}(10 \%)$ of $\mathbf{2 (E)} \mathbf{- N}$-\{3-methyl-1-[(2E)-3-phenyl-prop-2-enoyl]-1H-pyrazol-5-yl\}-3phenylacrylamide (VIII). mp $173-174^{\circ} \mathrm{C}$. IR spectrum, cm^{-1} : $3264(\mathrm{NH}), 1684 \mathrm{br}(\mathrm{CO}, \mathrm{CONH}), 1624$ (Ph$\mathrm{C}=\mathrm{C}), 1532(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 12.61 br.s $(1 \mathrm{H}, \mathrm{NH}), 8.12-7.48 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.98 \mathrm{~d}$ $(1 \mathrm{H},=\mathrm{CH}, J 16.0 \mathrm{~Hz}), 7.21 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.8 \mathrm{~Hz}\right)$, $6.87 \mathrm{C}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right), 2.26 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum: $[M+\mathrm{H}]^{+} 358,[M-\mathrm{H}]^{+} 356$. Found, \%: C 73.98; H 5.28; N 16.29. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$. Calculated, \%: C 73.95; H 5.32; N 16.34. M 357.41.

To the methanol filtrate water was added (1:5), and was filtered off $1.25 \mathrm{mmol}(25 \%)$ of $\mathbf{2}$ (E)- N -(3-methyl-1H-pyrazole-5-yl)-3-phenyl-acryl-amide (VII) that was crystallized from 2-propanol. mp 238-240 ${ }^{\circ}$. IR spectrum, $\mathrm{cm}^{-1}: 3232-2928\left(\mathrm{NH}, \mathrm{CH}_{3}\right), 1660$ ("amide I"), 1592 ("amide II"). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 12.03 br.s $\left(1 \mathrm{H}, \mathrm{N}^{2} \mathrm{H}\right), 10.51$ br.s $(1 \mathrm{H}, \mathrm{NH}), 7.56-7.38 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.51,6.86 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.6 \mathrm{~Hz}\right), 6.37 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right)$, $2.19 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 227(43)$ $[M]^{+}, 199$ (24), 131 (96), 103 (100). Found, \%: C 68.75;

H 5.70; N 18.57. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$. Calculated, \%: C 68.72; H 5.72; N 18.50. M 227.27.
b. To a solution of 5 mmol of amine \mathbf{I} in 2 ml of acetone at $40^{\circ} \mathrm{C}$ was added a solution of 7.5 mmol of acid chloride VI in 2 ml of acetone and 0.2 ml of pyridine, after 30 min the precipitate was filtered off and recrystallized from methanol. We isolated 1.95 mmol (39%) of diacyl derivative X. mp 207-208 ${ }^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3324$ (NH), 1692 br. (CO, CONH), 1620 ($\mathrm{Ph}-\mathrm{C}=\mathrm{C}$), 1528 $(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 10.78 br.s $(1 \mathrm{H}, \mathrm{NH})$, $7.94 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.90-7.42 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.17 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 6.80 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right), 2.26 \mathrm{~s}$ $\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right)$: 357 (25) $[M]^{+}$, 226 (15), 198 (12), 131(100), 103 (15), 77 (10). Found, \%: C 74.04; H 5.38; N 16.32. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$. Calculated, \%: C 73.95; H 5.32; N 16.34. M 357.41.

The solvent was removed from the acetone filtrate, 6 ml of a mixture methanol-water, 1:5, was added to the amorphous residue, the mixture was boiled for 2-3 min, the precipitate was filtered off and crystallized from a mixture acetone-methanol, $1: 1$, to isolate 0.75 mmol (15\%) of compound IX.
c. To a dispersion of 5 mmol of amine \mathbf{I} in 2 ml of benzene was added 7.5 mmol of acid chloride $\mathbf{V I}$ in 2 ml of benzene, the reaction mixture was boiled for 30 min , the amorphous precipitate was filtered off and recrystallized from methanol to obtain $1.35 \mathrm{mmol}(27 \%)$ of substance \mathbf{X}. On removal of the solvent from the benzene filtrate the residue was boiled in a methanolwater, $1: 5$, the precipitate was filtered off and crystallized from 2-propanol to obtain $0.6 \mathrm{mmol}(12 \%)$ of compounds VIII and on removing a part of solvent from the filtrate a was isolated $1.55 \mathrm{mmol}(31 \%)$ of amide VII.
d. To a mixture of 5 mmol of amine \mathbf{I} and 0.2 ml of pyridine in 2 ml of benzene was added 7.5 mmol of acid chloride VI in 2 ml of benzene, the reaction mixture was boiled for 30 min , the precipitate was filtered off and recrystallized from methanol to obtain $2.4 \mathrm{mmol}(48 \%)$ of compound \mathbf{X}. From the benzene filtrate after removing a part of the solvent crystals precipitated of (2E)-3phenylacrylic anhydride XI. Yield $0.94 \mathrm{mmol}(19 \%), \mathrm{mp}$ $133^{\circ} \mathrm{C}\left(134^{\circ} \mathrm{C}\right.$ [36]).

Reaction of 2-aminobenzimidazole (II) with cinnamoyl- chloride (VI). a. To a solution of 1 mmol of aminoazole II in 1 ml of DMF was added 1 mmol of acid chloride VI in 0.5 ml of DMF, the formed fine precipitate was filtered off and crystallized from methanol to obtain $0.9 \mathrm{mmol}(89 \%)$ of ($\mathbf{2 E}$) $\mathbf{- N}$ - $\mathbf{1 H}$-benzimidazol-2-yl-3phenylacrylamide (XII), mp $245-247^{\circ} \mathrm{C}\left(257-258^{\circ} \mathrm{C}\right.$
[5]). IR spectrum, $\mathrm{cm}^{-1}: 3232-2768(\mathrm{NH}), 1688$ ("amide I"), 1640, $1480(\mathrm{C}=\mathrm{N}), 1616$ ($\mathrm{Ph}-\mathrm{C}=\mathrm{C}$), 1540 ("amide II"). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 8.50 br.s ($2 \mathrm{H}, \mathrm{NH}$), $7.7-7.0 \mathrm{~m}(9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.55,6.50 \mathrm{~d}\left(1 \mathrm{H}, J_{A B} 16.0 \mathrm{~Hz}\right)$. Mass spectrum, $m / z:[M+\mathrm{H}]^{+} 264,[M-\mathrm{H}]^{+} 262$. Found, \%: C 73.10; H 6.74; N 16.10. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$. Calculated, \%: C 73.00; H 6.77; N 15.97. M 263.30. Yield of amidea XII in acetone 85%.
b. A mixture of 1 mmol of aminoazole II and 1 mmol of acid chloride VI in 3 ml of benzene was boiled for 10 min , and the precipitate of amide XII was filtered off. Yield $0.8 \mathrm{mmol}(80 \%)$.
c. To a solution of 1 mmol of aminoazole $\mathbf{I I}$ in 3 ml of acetone was added 0.1 ml of pyridine and 1 mmol of acid chloride VI in 2 ml of acetone, and the precipitate of amide XII was filtered off. Yield $0.6 \mathrm{mmol}(57 \%)$.
d. A mixture of 1 mmol of aminoazole II, 0.1 ml of pyridine, and 1 mmol of acid chloride $\mathbf{V I}$ in 3 ml of benzene was boiled for 10 min , and the precipitate of amide XII was filtered off. Yield 0.55 mmol (55%).

Cyclocondensation of compound XII. The boiling of 1 mmol of amide XII in 3 ml of DMF was continued for 4 h , then cooled, $5-7 \mathrm{ml}$ of 2-propanol was added and 0.8 mmol (83%) of 4-phenyl-3,4-dihydropyrimido-[1,2-a]benzimidazol-2(1H)-one (XIII) was filtered off, mp $289-291^{\circ} \mathrm{C}\left(289-290\right.$ [4], 285-289${ }^{\circ} \mathrm{C}$ [5, 6]).

Reaction of 3-amino-1,2,4-triazole (III) with cinnamoyl chloride (VI). a. To a dispersion of 5 mmol of amine III in 5 ml of acetone was slowly added a solution of 5 mmol of acid chloride VI in 5 ml of acetone, the mixture was heated at $40^{\circ} \mathrm{C}$ for 30 min , the formed precipitate was filtered off, boiled with water to remove the unreacted amine, the insoluble precipitate was crystallized from methanol to obtain $2.7 \mathrm{mmol}(54 \%)$ of 1-[(2E)-3-phenylprop-2-enoyl]-1 H-1,2,4-triazol-5amine (XVI). mp $235-237^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3444$ $\left(\mathrm{NH}_{2}\right), 3288-3024\left(\mathrm{NH}, \mathrm{NH}_{2}\right), 1700(\mathrm{CO}), 1644(\mathrm{Ph}-$ $\mathrm{C}=\mathrm{C}), 1628(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta \mathrm{ppm}: 7.9 \mathrm{~d}$ $\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.8 \mathrm{~Hz}\right), 7.8 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{Ht}\right), 7.7 \mathrm{br} . \mathrm{s}$ $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.6-7.5 \mathrm{~m}\left(7 \mathrm{H},=\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, $\%$: C 61.64; H 4.70; N 26.20. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 61.68; H 4.67; N 26.17.

The precipitate separated from the acetone filtrate on cooling was treated with methanol to isolate 0.75 $\mathrm{mmol}(15 \%)$ of insoluble in methanol 3-amino-1,2,4triazole phenylacrylate (XVIII). mp $250-253^{\circ} \mathrm{C}$. IR spectrum, cm^{-1} : $3332\left(\mathrm{NH}_{2}\right), 3192-2792\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$, $1704(\mathrm{COOH}), 1660(\mathrm{Ph}-\mathrm{C}=\mathrm{C}), 1636(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 112008
spectrum, δ, ppm: 12.4 br.s $(1 \mathrm{H}, \mathrm{COOH}), 10.8 \mathrm{br} . \mathrm{s}(1 \mathrm{H}$, $\mathrm{NH}), 9.2$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.9,6.7 \mathrm{~d}(1 \mathrm{H},=\mathrm{CH}$, $\left.J_{A B} 16.2 \mathrm{~Hz}\right), 7.7-7.4 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{Ht}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 56.87; H 5.21; N 24.20. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 56.90; H 5.17; N 24.14.

From the filtrate was isolated $0.5 \mathrm{mmol}(10 \%)$ of (2E)-3-phenyl--N-1H-1,2,4-triazole-5-ylacryl-amide (XVII). mp 282-284 ${ }^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3240-2800$ (NH), 1684 ("amide I"), 1632 ($\mathrm{Ph}-\mathrm{C}=\mathrm{C}$), 1576 ("amide II"). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $13.4,11.5$ br.s $(1 \mathrm{H}$, $\mathrm{NH}), 7.8-7.4 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{Ht},=\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.9 \mathrm{~d}(1 \mathrm{H}$, $J_{A B} 15.8 \mathrm{~Hz}$). Found, \%: C 61.71 ; H 4.64; N 26.08. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$. Calculated, \%: C 61.68; H 4.67; N 26.17.
b. To a mixture of 5 mmol of amine III, 0.5 ml of pyridine, and 5 ml of acetone was slowly added a solution of 5 mmol of acid chloride VI in 5 ml of acetone, the mixture was heated at $40^{\circ} \mathrm{C}$ for 30 min , the formed precipitate was filtered off, boiled with water to remove the unreacted amine, the insoluble precipitate was crystallized from methanol to obtain $3.5 \mathrm{mmol}(70 \%)$ of cinnamoyl derivative XVI. The acetone filtrate was evaporated, the residue was boiled with water to remove the unreacted amine, the insoluble precipitate was crystallized from methanol to obtain $1 \mathrm{mmol}(20 \%)$ of 1-[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-3amine (XIX), mp 205-206 ${ }^{\circ}$. IR spectrum, $\mathrm{cm}^{-1}: 3408$, 3304-3112 $\left(\mathrm{NH}_{2}\right), 1696(\mathrm{CO}), 1644(\mathrm{Ph}-\mathrm{C}=\mathrm{C}), 1624$ $(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $9.0 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}, \mathrm{Ht}\right)$, $7.9,7.7 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.8-7.4 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 6.1 br.s ($2 \mathrm{H}, \mathrm{NH}_{2}$). Found, \%: C 57.43; H 4.38; N 26.12. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$. Calculated, \%: C 57.39; H 4.35; N 26.17.
c. A mixture of 5 mmol of amine III and 5 mmol of acid chloride VI in 10 ml of benzene was boiled for 30 min , the formed precipitate was filtered off and crystallized from methanol to obtain 0.9 mmol (18%) of compound XVI.
d. A mixture of 5 mmol of amine III, 5 mmol of acid chloride VI, and 0.5 ml of pyridine in 10 ml of benzene was boiled for 30 min , the formed precipitate was filtered off, boiled with water, and recrystallized from methanol to obtain $2.3 \mathrm{mmol}(46 \%)$ of cinnamoyl-derivative XVI, and after removing $\sim 30 \%$ of the solvent from the filtrate we isolated $0.7 \mathrm{mmol}(12 \%)$ of compound XIX.

Conversion of compound XVI in 7-phenyl-6,7-dihydro-1,2,4-triazolo $[1,5-a]$ pyrimidin-5-(4H)-one (XX). a. A solution of 1 mmol of compound XVI in 1 ml of DMF was boiled for 1.5 h , cooled, 3 ml of 2-propanol
was added, and the solvents were removed at a reduced pressure. The residue was recrystallized from methanol to obtain 0.2 g of a mixture of compounds XVII and XX in a ratio 2:1 (${ }^{1} \mathrm{H}$ NMR data).
b. At boiling of 1 mmol of compound XVI in DMF for 6 h we obtained $0.64 \mathrm{mmol}(64 \%)$ of compound $\mathbf{X X}, \mathrm{mp}$ $214-217^{\circ} \mathrm{C}\left(215-217^{\circ} \mathrm{C}[8]\right)$.

Reaction of 5-amino-3-methylsulfanyl-1,2,4triazole (IV) with cinnamoyl- chloride (VI).
a. To a dispersion of 3 mmol of amine IV in 3 ml of acetone was slowly added a solution of 3 mmol of acid chloride VI in 3 ml of acetone, the mixture was boiled for 30 min , the formed crystalline precipitate was filtered off and recrystallized from 2-propanol to obtain 1.14 mmol (38\%) of 3-(methyl-sulfanyl)-1[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-5-amine (XXI). mp 204$206^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3428,3100\left(\mathrm{NH}_{2}\right), 1704(\mathrm{CO})$, $1616(\mathrm{Ph}-\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 7.9,7.6 \mathrm{~d}$ $\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.8-7.4 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.6 \mathrm{br} . \mathrm{s}$ $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.5 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Found, \%: C 55.41; H 4.64; N 21.48; S 12.29. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}$. Calculated, \%: C 55.38; H 4.62; N 21.54; S 12.31.

The residue after removing acetone was boiled with water, the insoluble part was filtered off, and was recrystallized from 2-propanol to isolate 0.7 mmol (24%) of 5-(methylsulfanyl)-1[(2E)-3-phenylprop-2-enoyl]-1H-1,2,4-triazol-3-amine (XXII). Amorphous colorless substance, $\mathrm{mp} 202-204^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3424,3116$ $\left(\mathrm{NH}_{2}\right), 1704(\mathrm{CO}), 1628(\mathrm{Ph}-\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \operatorname{ppm}: 7.9,7.6 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.8 \mathrm{~Hz}\right), 7.7-7.5 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.1$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.6 \mathrm{C}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Found, \%: C 55.40; H 4.58; N 21.56; S 12.33. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{OS}$. Calculated, \%: C 55.38; H 4.62; N 21.54; S 12.31 .
b. To a mixture of 3 mmol of amine $\mathbf{I V}, 0.2 \mathrm{ml}$ of pyridine in 3 ml of acetone was slowly added a solution of 3 mmol of acid chloride VI in 3 ml of acetone, the mixture was boiled for 30 min . We carried out the workup as described above and isolated $1.5 \mathrm{mmol}(50 \%)$ of compound XXI and 0.7 mmol (23%) of amine XXII.
c. A mixture of 3 mmol of amine IV and 3 mmol of acid chloride VI in 5 ml of benzene was boiled for 30 min , the separated precipitate was twice recrystallized from 2-propanol to obtain $0.7 \mathrm{mmol}(24 \%)$ of compound XXI. From the alcoholic filtrates after the removal of $\sim 50 \%$ of solvent was isolated $0.5 \mathrm{mmol}(16 \%)$ of amine XXII.
d. To a mixture of 3 mmol of amine $\mathbf{I V}, 0.2 \mathrm{ml}$ of pyridine in 3 ml of benzene slowly added a solution of 3 mmol of acid chloride VI in 2 ml of benzene, the mixture was boiled for 30 min , the solvent was decanted from the viscous residue, the latter was twice recrystallized from 2-propanol to obtain 0.5 mmol (16%) of compound XXI as yellow crystals. From the alcoholic filtrates 0.3 $\mathrm{mmol}(10 \%)$ of amine XXII was isolated.

Conversion of compound XXII into compound XXI. A mixture of 1 mmol of amine XXII and 0.25 ml of pyridine in 5 ml of ethylacetate was boiled for 2.5 h ; from the cooled solution yellow crystals of compound XXI were filtered off. Yield $0.65 \mathrm{mmol}(65 \%)$. The residue after removing the solvent was recrystallized from 2-propanol to isolate 0.1 mmol (10%) of initial cinnamoyl derivative XXII.

2-(Methylsulfanyl)-7-phenyl-6,7-dihydro-1,2,4-triazolo-[1,5-a]-pyrimidin-5(4H)-one (XXIII). In 2 ml of DMF 2 mmol of the mixture of acyl derivatives XXI and XXII was boiled for 4 h , then the reaction mixture was cooled, $5-7 \mathrm{ml}$ of 2-propanol was added, and $1.2 \mathrm{mmol}(57 \%)$ of compound XXIII was filtered off, $\mathrm{mp} 255-256^{\circ} \mathrm{C}\left(254-256^{\circ} \mathrm{C}\right.$ [32]). From the filtrate on removal of excess solvent $0.2 \mathrm{mmol}(12 \%)$ of substance XXI was isolated.

Reaction of 5-amino-1,2-dihydro-3H-1,2,4-tri-azole-3-thione (V) with cinnamoyl- chloride (VI). a. A mixture of 10 mmol of amine $\mathbf{V}, 0.6 \mathrm{ml}$ of pyridine, and 10 mmol of acid chloride VI in 15 ml of acetone was boiled for 30 min , the precipitate was separated and boiled with water, filtered off, recrystallized from methanol to obtain 0.26 g of a mixture of 5 -amino-1-[(2E)-3-phenyl-prop-2-enoyl]-1,2-dihydro-3H-1,2,4-triazole-3thione (XXIV) and 5 -amino-1,2-bis[(2E)-3-phenyl-prop-2-enoyl]-1,2-dihydro-3H-1,2,4-triazole-3thione (XXV) in a ratio 3:1 (${ }^{1} \mathrm{H}$ NMR data).

Compound XXIV. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 12.4 br.s $(1 \mathrm{H}, \mathrm{NH}), 7.8$ br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.58,6.51 \mathrm{~d}(1 \mathrm{H}$, $\left.=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.82-7.77,7.46-7.36 \mathrm{~m}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$.

Compound XXV. ${ }^{1}$ HNMR spectrum, δ, ppm: 7.9 br .s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.96,7.70 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.56$, $7.15 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.8 \mathrm{~Hz}\right), 7.8-7.7,7.5-7.4 \mathrm{~m}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$.
b. A mixture of 10 mmol of amine $\mathbf{V}, 0.6 \mathrm{ml}$ of pyridine, and 10 mmol of acid chloride VI in 15 ml of acetone was boiled for 3 h , the precipitate was separated and boiled with water, filtered off, recrystallized from methanol to
obtain 0.1 g of a mixture of compounds XXIV and XXV. From the acetone filtrate after removing $\sim 50 \%$ of solvent settled a precipitate that was boiled in succession in water, methanol, and acetone. We isolated $2.9 \mathrm{mmol}(29 \%)$ of 3-\{3-amino-2[(2E)-3-phenyl-prop-2-enoyl]-5-thioxo-2,5-dihydro-1H-1,2,4-triazol-1-yl\}-3-phenylpropanoic acid (XXVI), then $2.2 \mathrm{mmol}(22 \%)$ of 2-amino-5-phenyl-5,6-dihydro-7H-[1,2,4]tri-azolo[5,1-b][1,3]thiazin-7-one (XXVII) as bright yellow crystals.

Compound XXVI. mp $245-247^{\circ} \mathrm{C}$. IR spectrum, cm^{-1} : 3432, $3272\left(\mathrm{NH}_{2}\right), 1712(\mathrm{COOH}), 1704(\mathrm{CO}), 1624(\mathrm{Ph}-$ $\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $12.3 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{COOH})$, 7.68 br.s ($2 \mathrm{H}, \mathrm{NH}_{2}$), 5.09 d.d ($1 \mathrm{H}, \mathrm{CH}_{X}, J_{A X} 9.0$, $\left.J_{B X} 6.0 \mathrm{~Hz}\right), 7.8,7.5 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 16.0 \mathrm{~Hz}\right), 7.7-$ $7.2 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.17,3.02$ d.d $\left(2 \mathrm{H}, \mathrm{CH}_{2 A B}\right.$, $J_{A B}-16.2 \mathrm{~Hz}$). Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 394$ (28), 263 (10), 245 (17), 149 (40), 131 (100), 103 (90), 77 (40). Found, \%: C 60.94; H 4.54; N 14.25; S 8.08. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$. Calculated, \%: C 60.91; H 4.57; N 14.21; S 8.12. M 394.40.

Compound XXVII. mp $225-227^{\circ} \mathrm{C}$. IR spectrum, $\mathrm{cm}^{-1}: 3340,3172\left(\mathrm{NH}_{2}\right), 1724(\mathrm{CO}), 1564(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 6.2 br.s $\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.30$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{X}\right.$, $\left.J_{A X} 3.0, J_{B X} 11.4 \mathrm{~Hz}\right), 7.5-7.4 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.63$, 3.22 d.d $\left(2 \mathrm{H}, \mathrm{CH}_{2 A B}, J_{A B}-16.8 \mathrm{~Hz}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 246(34), 131(80), 103(100), 77(33)$. Found, \%: C 53.70; H 3.99; N 22.82; S 13.07. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$. Calculated, \%: C 53.66; H 4.07; N 22.76; S 13.01 . M 246.29.
(2E)-3-N-(5-Thioxo-2,5-dihydro-1H-1,2,4-tri-azol-3-yl)-3-phenylacrylamide (XXVIII). a. A mixture of 2 mmol of amine \mathbf{V} and 3.3 mmol of acid chloride VI in 4 ml of pyridine was boiled for 1 h and poured into water. The formed precipitate was filtered off, washed on the filter with 10% solution of HCl , and recrystallized from a mixture methanol-water, $1: 1$, yield 0.64 mmol (34\%), mp 335-337${ }^{\circ}$. IR spectrum, cm^{-1} : 3252-3056 (NH), 1672 ("amide I"), 1624 ($\mathrm{Ph}-\mathrm{C}=\mathrm{C}$), 1564 ("amide II"). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 13.9, 12.2, 11.3 br.s $(1 \mathrm{H}, \mathrm{NH}), 7.7,6.7 \mathrm{~d}\left(1 \mathrm{H},=\mathrm{CH}, J_{A B} 15.4 \mathrm{~Hz}\right), 7.6-7.4 \mathrm{~m}$ (5H, C ${ }_{6} \mathrm{H}_{5}$). Found, \%: C 53.64; H 4.00; N 22.72; S 13.05. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$. Calculated, \%: C 53.66; H 4.07; N 22.76; S 13.01.
b. A solution of 1 mmol of acid XXVI in 1 ml of DMF was boiled for 1 h , then 3 ml of 2-propanol was added, and $0.1 \mathrm{mmol}(11 \%)$ of amide XXVIII was filtered off.
c. In a china cup was heated to melting 2 mmol of thiazinone XXVII, the melt was cooled, crushed, boiled in a little acetone, filtered while hot from initial thiazinone, from the filtrate $0.4 \mathrm{mmol}(20 \%)$ of amide XXVIII was isolated.

REFERENCES

1. Kost, A.A., Khim. Geterotsikl. Soedin., 1980, p. 1200.
2. Deeb, A., El-Mobayed, M., and Abdel, Hamid, A., Pol. J. Chem., 1992, vol. 66, p. 449.
3. Fissher, G., Adv. Heterocycl. Chem., 1993, vol. 57, p. 81.
4. Shazhenov, A.A. and Kadyrov, Ch.Sh., Khim. Geterotsikl. Soedin., 1977, p. 1389.
5. Nawrocka, W., Pol. J. Chem., 1995, vol. 69, p. 1158.
6. Nawrocka, W. and Zimecki, M., Arch. Pharm. Pharm. Med. Chem., 1998, vol. 331, p. 249.
7. Nawrocka, W., Zimecki, M., Kuznicki, T., and Kowalska, M.W., Arch. Pharm. Pharm. Med. Chem., 1999, vol. 33, p. 85.
8. Desenko, S.M., Lipson, V.V., Shishkin, O.V., Komykhov, S.A., Orlov, V.D., Lakin, S.E., Kuznetsov, V.P., and Meier, H., J. Heterocycl. Chem., 1999, vol. 36, p. 205.
9. Lipson, V.V., Desenko, S.M., Orlov, V.D., Shishkin, O.V., Shirobokova, M.G., Chernenko, V.N., and Zinov'eva, L.I., Khim. Geterotsikl. Soedin., 2000, p. 1542.
10. Perevalov, S.G., Bur-gart, Ya.V., Saloutin, V.I., and Chupakhin, O.N., Usp. Khim., 2001, vol. 70, p. 1039.
11. Krug-lenko, V.P., Gnidets, V.P., Klyuev, N.A. Logachev, E.V., Klykov, M.A., and Povstyanoi, M.V., Khim. Geterotsikl. Soedin., 1985, p. 1402.
12. Yanborisov, T.N., Zhikina, I.A., Yanborisova, O.A. Shurov, S.N., and Andreichikov, Yu.S., Zh. Org. Khim., 1992, vol. 28, p. 2554.
13. Chebanov, V.A., Sakhno, Ya.I., Desenko, S.M., Shishkina, S.V., Musatov, V.I., Shishkin, O.V., and Knyazeva, I.V., Synthesis, 2005, p. 2597.
14. Ghassan, M.A. and Sowell, J.W., J. Heterocycl. Chem., 1990, vol. 27, p. 1201.
15. Zaki, M.E.A. and Fathalla, O.A., Egypt. J. Pharm. Sci., 1997, vol. 38, p. 363.
16. Abdelhamid, A.O., Riad, B.Y., and Aziz, S.I., Arch. Pharm., 1987, vol. 320, p. 642.
17. Sadek, K.U., Selim, M.A., Elnagdi, M.H., and Otto, H.H., Bull. Chem. Soc. Jpn., 1993, vol. 66, p. 2927.
18. Sherif, S.M. and Hussein, A.M., Monatsh. Chem., 1997, vol. 128, p. 687.
19. Atwal, K.S. and Moreland, S., Bioorg. Med. Chem. Lett.,

1991, vol. 1, p. 291.
20. Alajarin, R., Jordan, P., Vaquero, J.J. and Alvarez-Builla, J., Synthesis, 1995, p. 389.
21. Alajarin, R., Vaquero, J.J., Alvarez-Builla, J., Fau de CasaJuana, M., Sunkel, C., Priego, J.G., Gomez-Sal, P., and Torres, R., Bioorg. Med. Chem., 1994, vol. 2, p. 323.
22. Ram, V.J., Kushwaha, D.S., and Mishra, L., Indian J. Chem., 1989, vol. 28B, p. 242.
23. Nagahara, K., Kawano, H., Sasaoka, S., Ukawa, C., Hirama, T., Takada, A., Cottam, H.B., and Robins, R.K. , J. Heterocycl. Chem., 1994, vol. 31, p. 239.
24. Hisao, Y., Hideo, K., Shiro, K., and Yoshiaki, O., Japan Patent 59095289, 1984; Chem. Abstr., 1985, vol. 101, 171281a.
25. Quiroga, J., Alvarado, M., Insuasti, B., Moreno, R., Ravina, E., Estevez, I., R.H. and de Almeida, S., J. Heterocycl. Chem., 1999, vol. 36, p. 1311.
26. Lipson, V.V., Karnozhitskaya, T.M, Desenko, S.M., Shishkina, S.V., Shishkin, O.V., and Musatov, V.I., Zh. Org. Khim., 2007, vol. 43, p. 257.
27. Lin-coln, D.G. and Robbins, M.J., US Patent 5061799, 1991; Chem. Abstr., 1992, vol. 116, p. 41475.
28. Quiroga, J., Hormaza, A., Insuasti, B., Saitz, C., Jullian, C., and Canete, A., J. Heterocycl.Chem., 1998, vol. 35, p. 61.
29. Clarke, D., Mares, R.W., and McNab, H., J. Chem. Soc., Perkin Trans. 1, 1997, p. 1799.
30. Lipson, V.V., Desenko, S.M., Orlov, V.D., Karnozhitskaya, T.M., and Shirobokova, M.G., Khim. Geterotsikl. Soedin., 1999, p. 664.
31. Lipson, V.V., Orlov, V.D., Desenko, S.M., Shishkina, S.V., Shishkin, O.V., and Shirobokova, M.G., Khim. Geterotsikl. Soedin., 2000, p. 1190.
32. Lipson, V.V., Desenko, S.M., Borodina, V.V., Shirobokova, M.G., Karnozhitskaya, T.M., Musatov, V.I., and Kravchenko, S.V., Khim. Geterotsikl. Soedin., 2005 , p. 246.
33. Lipson, V.V., Shirobokova, M.G, and Musatov, V.I., Zh. Org. Farm. Khim., 2005, vol. 3, p. 64.
34. Lipson, V.V., Shirobokova, M.G, and Borodina, V.V., Ukr. Khim. Zh., 2005, vol. 6, p. 95.
35. Lipson, V.V., Desenko, S.M., Shirobokova, M.G, Shishkin, O.V., and Shishkina, S.V., Zh. Org. Khim., 2006, vol. 42, p. 1040.
36. Samy, Abdel-Baky and Roger, W. Giese, J. Org. Chem., 1986, vol. 51, p. 3390.
37. Zefirov, Yu.V., Kristallografiya (Crystallography), 1997, vol. 42, p. 936.
38. Burgi, H.-B. and Dunitz, J.D., Structure Correlation, New York: Weinheim, 1994, vol. 2, p. 741.
39. Desenko, S.M., Orlov, V.D., Lipson, V.V., Kaganovs'-
kii, A.S., Van-Tue, Z., and Ivkov, S.M., Dokl. Akad. Nauk USSR, B, 1990, vol. 7, p. 44.
40. Coburn, M.D., Loughran, E.D., and Smith, L.C., J. Heterocyclic Chem., 1970, vol. 7, p. 1149.
41. Hirata, T., Wood, H.B., and Dricoll, J.S., J. Chem. Soc., Perkin Trans. 1, 1973, p. 1209.
42. Fidler, Zh.N., Shibanova, E.F., Makerov, P.V., Kalikh-
man, I.D., Shulunova, A.M., Sarapulova, G.I., Klyba, L.V., Vitkovskii, V.Yu., Chipanina, N.N., Lopyrev, V.A., and Voronkov, M.G., Khim. Geterotsikl. Soedin., 1980, p. 1414.
43. Bellamy, L.J., The Infra-Red Spectra of Complex Molecules, London: Methuen, 1958.
44. Britsun, V.N., Pirozhenko, V.V., and Lozinskii, M.O., Zh. Org. Khim., 2000, 36, 1102.

